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The Four Fundamental Subspaces of a Linear Operator

For a linear operator A : X → Y,
X = N (A)⊥ ⊕N (A) and Y = R(A) ⊕R(A)⊥

Defining the adjoint A∗ : Y → X by

〈y ,Ax〉 = 〈A∗y , x〉
we obtain (as was shown last lecture)

R(A∗) = N (A)⊥ and N (A∗) = R(A)⊥

yielding

X = R(A∗) ⊕ N (A) and Y = R(A) ⊕ N (A∗)

The four fundamental subspaces of A are the orthogonally complementary
subspaces R(A) and N (A∗) and the orthogonally complementary subspaces,
N (A) and R(A∗).
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Four Fundamental Subspaces – Cont.

Because

〈y ,Ax〉 = 〈A∗y , x〉 ⇔ 〈Ax , y〉 = 〈x ,A∗y〉 ⇔ 〈x ,A∗y〉 = 〈Ax , y〉

the adjoint of A∗ is (merely by definition!)

A∗∗ � (A∗)∗ = A

Thus the relationships between A and A∗ and their four fundamental
subspaces are entirely symmetrical:

A : X → Y A∗ : Y → X
〈y,Ax〉 = 〈A∗y, x〉 〈x,A∗y〉 = 〈Ax, y〉

Y = R(A)⊕ N (A∗) X = R(A∗) ⊕ N (A)

R(A) = N (A∗)⊥ R(A∗) = N (A)⊥
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The Pseudoinverse Solution – Cont.

Because of this symmetry, sometimes we can get twice the number of results per
derivation. For example, here we prove that

N (A) = N (A∗A) and R(A∗) = R(A∗A)

from which it directly follows that

N (A∗) = N (AA∗) and R(A) = R(AA∗)

Proofs of the first statements:

If x ∈ N (A), then obviously x ∈ N (A∗A). On the other hand

x ∈ N (A∗A) ⇐⇒ A∗Ax = 0

⇐⇒ 〈ξ,A∗Ax〉 = 0, ∀ξ
⇐⇒ 〈Aξ,Ax〉 = 0, ∀ξ
=⇒ 〈Ax ,Ax〉 = ‖Ax‖2 = 0

=⇒ x ∈ N (A)
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Four Fundamental Subspaces – Cont.

Proofs continued:

Having established that N (A) = N (A∗A), we have

x ∈ R(A∗A) ⇐⇒ x ⊥ N (A∗A) (using the fact that (A∗A)∗ = A∗A)

⇐⇒ x ⊥ N (A)

⇐⇒ x ∈ R(A∗)

Note that we have also established that

ν(A) = ν(A∗A), r(A) = r(AA∗), ν(A∗) = ν(AA∗), and r(A∗) = r(A∗A)

Furthermore, with A a mapping between two finite dimensional spaces one can show

r(A∗A) = r(AA∗) = r(A) = r(A∗)

Note that dimR(A) = dimR(A∗).
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Adjoint-Based Conditions for a P-Inv Solution

Having defined the adjoint we obtain the geometric conditions for a pseudoinverse
solution,

1. Geometric Cond. for a Least-Squares Solution: e = y − Ax′ ∈ N (A∗)

2. Geometric Cond. for a Minimum Norm LS Solution: x′ ∈ R(A∗)

The geometric conditions conditions easily lead to the algebraic conditions

1. Algebraic Cond. for an LS Solution – The Normal Equation: A∗Ax = A∗y

2. Algebraic Cond. for a Minimum Norm LS Solution: x = A∗λ

When the domain has a metric matrix Ω and the codomain has metric matrix W ,
then (assuming the standard canonical-basis representations of vectors and linear
operators) the adjoint operator is

A∗ = Ω−1AHW

Ken Kreutz-Delgado (UC San Diego) ECE 275A Fall 2011 6 / 48



Solving for the P-Inv Solution – I: A One-to-One

If a linear mapping A between finite dimensional spaces is either onto or
one-to-one, we say that A is full-rank. Otherwise A is rank deficient.

If A is a matrix which is onto, we say that it is full row rank.

If A is a matrix which is one-to-one we say that it is full column rank.

If A is one-to-one, then the least-squares solution to the inverse problem
y = Ax is unique. Thus the second algebraic condition, which serves to
resolve non-uniqueness when it exists, is not needed.

A one-to-one yields A∗A one-to-one and onto, and hence invertible. Thus
from the first algebraic condition (the normal equation), we have

A∗Ax = A∗y ⇒ x̂ = (A∗A)−1A∗y = A+y

showing that the pseudoinverse operator that maps measurement y to the
least-squares solution x̂ is given by

A one-to-one ⇒ A+ = (A∗A)−1A∗

Directly solving the normal equation A∗Ax = A∗y is a numerical superior way
to obtain x̂ . The expressions A+ = (A∗A)−1A∗ and x̂ = A+y are usually
preferred for mathematical analysis purposes.
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Solving for the P-Inv Solution – II: A Onto

If A is onto (has a full row rank matrix representation), then there is always a
solution to the inverse problem y = Ax . Thus the first algebraic condition
(the normal equation), which serves to obtain an approximate solution and
stands in for y = Ax when it is inconsistent, is not needed for our analysis
purposes. (It may have numerical utility however).

A onto yields A∗A onto and one-to-one, and hence invertible. Thus from the
second algebraic condition and the (consistent) equation y = Ax we have

x = A∗λ ⇒ y = Ax = AA∗λ ⇒ λ = (AA∗)−1y ⇒ x = A∗(AA∗)−1y = A+y

showing that the pseudoinverse operator that maps measurement y to the
least-squares solution x̂ is given by

A onto ⇒ A+ = A∗(AA∗)−1

Directly solving the equation AA∗λ = y for λ and then computing x̂ = A∗λ is
a numerical superior way to obtain x̂ . The expressions A+ = A∗(AA∗)−1 and
x̂ = A+y are usually preferred for mathematical analysis purposes.

What if A is neither one-to-one nor onto? How to compute the p-inv then?
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Orthogonal Projection Operators

Suppose that P = P2 is an orthogonal projection operator onto a subspace V
along its orthogonal complement V⊥. Then I − P is the orthogonal projection
operator onto V⊥ along V . For all vectors x1 and x2, we have

〈Px1, (I − P)x2〉 = 0 ⇔ 〈(I − P)∗Px1, x2〉 = 0 ⇔ (I − P)∗P = 0 ⇔ P = P∗P

which yields the property

Orthogonal Projection Operators are Self-Adjoint: P = P∗

Thus, if P = P2, P is a projection operator. If in addition P = P∗, then P is an
orthogonal projection operator.

A+A : X → X and AA+ : Y → Y are both orthogonal projection operators.
The first onto R(A∗) ⊂ X , the second onto R(A) ⊂ Y.
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R(A) and R(A∗) are Linearly Isomorphic

Consider the linear mapping A : X → Y restricted to be a mapping from R(A∗)
to R(A), A : R(A∗) → R(A).

The restricted mapping A : R(A∗) → R(A) is onto.

For all ŷ ∈ R(A) there exists x̂ = A+y ∈ R(A∗) such that Ax̂ = ŷ .

The restricted mapping A : R(A∗) → R(A) is one-to-one.

Let x̂ ∈ R(A∗) and x̂ ′ ∈ R(A∗) both map to ŷ ∈ R(A), ŷ = Ax̂ = Ax̂ ′.

Note that x̂ − x̂ ′ ∈ R(A∗) while at the same time A(x̂ − x̂ ′) = 0.

Therefore x̂ − x̂ ′ ∈ R(A∗) ∩ N (A), yielding x̂ − x̂ ′ = 0. Thus x̂ = x̂ ′.

Since all of the elements of R(A∗) and R(A) are in one-to-one correspondence,
these subspaces must be isomorphic as sets (and therefore have the same
cardinality).
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R(A) and R(A∗) are Linearly Isomorphic – Cont.

The restricted mapping A : R(A∗) → R(A) is a linear isomorphism.

Note that the restricted mapping A : R(A∗) → R(A) is linear, and therefore it
preserves linear combinations in the sense that

A(α1x̂1 + · · ·+ α�x̂�) = α1Ax̂1 + · · ·+ α�Ax̂� ∈ R(A)

Furthermore it can be shown that A isomorphically maps bases in R(A∗) to bases
in R(A). Thus the dimension (number of basis vectors in) R(A∗) must be the
same as the dimension (number of basis vectors) in R(A). Since the restricted
mapping A is an isomorphism that preserves the vector space properties of its
domain, span, linear independence, and dimension, we say that it is a linear
isomorphism.

Summarizing:

R(A∗) and R(A) are Linearly Isomorphic,

R(A∗) ∼= R(A)

r(A∗) = dim (R(A∗)) = dim (R(A)) = r(A)
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R(A) and R(A∗) are Linearly Isomorphic – Cont.

The relationship between ŷ = Ax̂ ∈ R(A) and x̂ = A+ŷ ∈ R(A∗)

x̂
A
�
A+

ŷ

is one-to-one in both mapping directions. I.e., every x̂ = Aŷ ∈ R(A∗) maps to the
unique element ŷ = Ax̂ ∈ R(A), and vice versa.

Therefore when A and A+ are restricted to be mappings between the subspaces
R(A∗) and R(A),

A : R(A∗) → R(A) and A+ : R(A) → R(A∗) ,

then they are inverses of each other:

A+
∣∣
R(A)

=
(
A
∣∣
R(A∗)

)−1
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Pseudoinverse & Orthogonal Projections

Let A : X → Y, with dim(X ) = n and dim(Y) = m.

For any y ∈ Y, compute
x̂ = A+y

We have

ŷ = PR(A)y (ŷ is the least-squares estimate of y)

= A x̂ (x̂ is a least-squares solution )

= AA+y

or
PR(A)y = AA+y , ∀y ∈ Y

Therefore
PR(A) = AA+ and PR⊥(A) = I − AA+
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Pseudoinverse & Orthogonal Projections – Cont.

For any x ∈ X , compute

ŷ = Ax (note that ŷ ∈ R(A) by construction)

Then
ŷ = PR(A)ŷ = Ax

Now let
x̂ = A+ŷ = A+Ax ∈ R(A∗) .

Then, since ŷ = Ax̂ ,

0 = A(x − x̂)

⇒ x − x̂ ∈ N (A) = R(A∗)⊥

⇒ x − x̂ ⊥ R(A∗)
⇒ x̂ = PR(A∗)x (by orthogonality principle & x̂ ∈ R(A∗) )
⇒ A+Ax = PR(A∗)x

Since this is true for all x ∈ X , we have

PR(A∗) = A+A and PR⊥(A∗) = I − A+A
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Properties of AA+ and A+A

Having shown that AA+ = PR(A) and A+A = PR(A∗), we now know that AA+

and A+A must satisfy the properties of being orthogonal projection operators.

In particular AA+ and A+A must be self-adjoint,

I. (AA+)∗ = AA+ II. (A+A)∗ = A+A

These are the first two of the four Moore-Penrose (M-P) Pseudoinverse
Conditions.

AA+ and A+A must also be idempotent, yielding

AA+AA+ = AA+ and A+AA+A = A+A

Note that both of these conditions are consequences of either of the remaining
two M-P conditions,

III. AA+A = A IV. A+AA+ = A+
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Four M-P P-Inv Conditions

M-P THEOREM: (Proved below.)

Consider a linear operator A : X → Y. A linear operator M : Y → X is the unique
pseudoinverse of A, M = A+, if and only if it satisfies the

Four M-P Conditions:

I. (AM)∗ = AM II. (MA)∗ = MA III. AMA = A IV. MAM = M

�

Thus one can test any possible candidate p-inv using the M-P conditions.

Example 1: Pseudoinverse of a scalar α

α+ =

{
1
α

α �= 0

0 α = 0

Example 2: For general linear operators A, B, and C for which the composite mapping
ABC is well-defined we have

(ABC)+ �= C+B+A+

because C+B+A+ in general does not satisfy the M-P conditions to be a p-inv of ABC .
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Four M-P P-Inv Conditions – Cont.

Example 3: Specializing Example 2, now assume that A and C are both unitary:
A∗ = A−1, C∗ = C−1. (If we further assume that our metric is Cartesian, then For
complex spaces this means that A−1 = A∗ = AH , whereas for real spaces this means that
A and B are orthogonal, A−1 = A∗ = AT .)

Assuming that A and C are unitary, we have

(ABC)+ = C∗B+A∗

as can be verified by showing that C∗B+A∗ satisfies the M-P conditions to be a p-inv for
ABC .

Note that with the additional unitary assumptions on A and C . we now can claim that
(ABC)+ = C+B+A+ since C∗B+A∗ = C−1B+A−1 = C+B+A+.

Example 4: Suppose that Σ is a block matrix m × n matrix with block entries

Σ =

(
S 01
02 0

)
=

(
S 0
0 0

)
where S is square and the remaining block matrices have only entries with value 0. Then

Σ+ =

(
S+ 0T2
0T1 0T

)
=

(
S+ 0
0 0

)
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Four M-P P-Inv Conditions – Cont.

Example 5: Let A be a complex m × n matrix mapping between X = Cn and
Y = Cm where both spaces have the standard Cartesian inner product. We shall
see that A can be factored as

A = UΣVH =
(
U1 U2

)(S 0
0 0

)(
VH
1

VH
2

)
= U1SV

H
1

This factorization is known as the Singular Value Decomposition (SVD). The
matrices have the following dimensions: U is m ×m, Σ is m × n, V is n × n.

The matrix S is a real diagonal matrix of dimension r × r where r = r(A). Its
diagonal entries, σi , i = 1, · · · , r , are all real, greater than zero, and are called the
singular values of A. The singular values are usually ordered in descending value

σ1 ≥ σ2 ≥ · · · ≥ σr−1 ≥ σr > 0

Note that

S+ = S−1 = diag−1(σ1 · · · σr ) = diag(
1

σ1
· · · 1

σr
)
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Four M-P P-Inv Conditions – Cont.

Example 5 – Cont.

The matrix U is unitary, U−1 = UH , and its columns form an orthonormal basis for the
codomain Y = C

m wrt to the standard inner product. (Its rows are also orthonormal.) If
we denote the columns of U, known as the left singular vectors, by ui , i = 1, · · · ,m,
the first r lsv’s comprise the columns of the m × r matrix U1, while the remaining lsv’s
comprise the columns of the m × μ matrix U2, where μ = m − r is the dimension of the
nullspace of A∗. The lsv ui is in one-to-one correspondence with the singular value σi for
i = 1, · · · , r .
The matrix V is unitary, V−1 = V H , and its columns form an orthonormal basis for the
domain X = C

n wrt to the standard inner product. (Its rows are also orthonormal.) If we
denote the columns of V , known as the right singular vectors, by vi , i = 1, · · · ,m, the
first r rsv’s comprise the columns of the n × r matrix V1, while the remaining rsv’s
comprise the columns of the n × ν matrix V2, where ν = n − r is the nullity (dimension
of the nullspace) of A. The rsv vi is in one-to-one correspondence with the singular value
σi for i = 1, · · · , r .
We have

A = U1SV
H
1 =

(
u1 · · · ur

)⎛⎜⎝
σ1

. . .

σr

⎞
⎟⎠
⎛
⎜⎝
vH
1

...
vH
r

⎞
⎟⎠ = σ1u1v

H
1 + · · ·+ σrurv

H
r
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Four M-P P-Inv Conditions – Cont.

Example 5 – Cont.

Using the results derived in Examples 3 and 4, we have

A+ = VΣ+UH (from example 3)

=
(
V1 V2

)(S+ 0
0 0

)(
UH
1 UH

2

)
(from example 4)

= V1S
−1UH

1 (from invertibility of S)

=
(
v1 · · · vr

)
⎛
⎜⎝

1
σ1

. . .
1
σr

⎞
⎟⎠

⎛
⎜⎝
uH1
...
uHr

⎞
⎟⎠

=
1

σ1
v1u

H
1 + · · ·+ 1

σr
vru

H
r

Note that this construction works regardless of the value of the rank r . This
shows that knowledge of the SVD of a matrix A allows us to determine its p-inv
even in the rank-deficient case.
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Four Moore-Penrose Pseudoinverse Conditions

MOORE-PENROSE THEOREM

Consider a linear operator A : X → Y.
A linear operator M : Y → X is the unique pseudoinverse of A, M = A+,
if and only if it satisfies the

Four Moore-Penrose Conditions:

I. (AM)∗ = AM II. (MA)∗ = MA III. AMA = A IV. MAM = M

�

More simply we usually say that A+ is the unique p-inv of A iff

I. (AA+)∗ = AA+ II. (A+A)∗ = A+A III. AA+A = A IV. A+AA+ = A+

The theorem statement provides greater clarity because there we distinguish
between a candidate p-inv M and the true p-inv A+.

If and only if the candidate p-inv M satisfies the four M-P conditions can we
claim that indeed A+ = M .
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Proof of the M-P Theorem

First we reprise some basic facts that are consequences
of the definitional properties of the pseudoinverse.

FACT 1: N (A+) = N (A∗)

FACT 2: R(A+) = R(A∗)

FACT 3: PR(A) = AA+

FACT 4: PR(A∗) = A+A

We now proceed to prove two auxiliary theorems (Theorems A and B).
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Proof of the M-P Theorem – Cont.

THEOREM A

Let C : X → Y and B : Y → Z be linear mappings. It is readily shown that the
composite mapping BC : X → Z is a linear mapping where BC is defined by

(BC )x � B(Cx) ∀x ∈ X

Then
N (B) ∩ R(C) = {0} ⇒ BC = 0 iff C = 0

�
Proof

BC = 0 ⇔ (BC )x = 0 ∀x (definition of zero operator)

⇔ B(Cx) = 0 ∀x (definition of composition)

⇔ Cx = 0 ∀x (because Cx ∈ R(C ) ∩ N (B) = {0} , ∀x)
⇔ C = 0 (definition of zero operator)

QED
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Proof of the M-P Theorem – Cont.

Theorem B covers the uniqueness part of the M-P Theorem.

THEOREM B. The pseudoinverse of A is unique. �
Proof. Suppose that A+ and M are both p-inv’s of A. Then Fact 3 gives
PR(A) = AA+ = AM or

A (A+ −M) = 0

From Fact 2, R(A∗) = R(A+) = R(M) and as a consequence

R(A+ −M) ⊂ R(A∗)

But R(A∗) ⊥ N (A) and therefore

R(A+ −M) ⊂ R(A∗) = N (A)⊥

so that
N (A) ∩R(A+ −M) = {0}

Therefore from Theorem A,

A+ −M = 0 ⇒ A+ = M

QED
Ken Kreutz-Delgado (UC San Diego) ECE 275A Fall 2011 24 / 48



Proof of the M-P Theorem – Cont.

Necessity (‘only if’ part) of the M-P Conditions. Assume that M = A+.

Necessity of M-P Conditions I & II. Easy consequences of Facts 3 and 4.

Necessity of M-P Condition III. Note that Fact 4 and indempotency of a projection
operator implies (A+A)(A+A) = A+A, or

A+ (AA+A− A)︸ ︷︷ ︸
�C=A(A+A−I )

= AC = 0

We have N (A+) = N (A∗) (Fact 1) and R(C) ⊂ R(A) = N (A∗)⊥. Therefore
N (A+) ∩ R(C) = N (A∗) ∩R(C) = {0} so that by Theorem A, C = 0.

Necessity of M-P Condition IV. Note that Fact 3 and indempotency of a projection
operator implies (AA+)(AA+) = AA+, or

A (A+AA+ − A+)︸ ︷︷ ︸
�C=A+(AA+−I )

= AC = 0

With R(A+) = R(A∗) (Fact 2) we have R(C) ⊂ R(A+) = R(A∗) = N (A)⊥. Therefore
N (A) ∩R(C) = {0} so that by Theorem A, C = 0.
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Proof of the M-P Theorem – Cont.

Sufficiency(‘if’ part) of the M-P Conditions.

Here we assume that M satisfies all four of the M-P conditions and then show as
a consequence that M = A+.

We do this using the following steps.

(1) First prove that PR(A) = AM (proving that AM = AA+ via uniqueness of
projection operators).

(2) Prove that PR(A∗) = MA (proving that MA = A+A).

(3) Finally, prove that as a consequence of (1) and (2), M = A+.
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Proof of the M-P Theorem – Cont.

Sufficiency – Cont.

Step (1):

From M-P conditions 1 & 3, (AM)∗ = AM and AM = (AMA)M = (AM)(AM), showing
that AM is an orthogonal projection operator. But onto what? Obviously onto a
subspace of R(A) as R(AM) ⊂ R(A). However

R(A) = A(X ) = AMA(X ) = AM (A(X )) = AM (R(A)) ⊂ AM(Y) = R(AM) ⊂ R(A)

yields the stronger statement that R(AM) = R(A). Thus AM is the orthogonal
projector onto the range of A, PR(A) = AM = AA+.

Step (2):

From M-P conditions 2 & 3, (MA)∗ = MA and MA = M(AMA) = (MA)(MA), showing
that MA is an orthogonal projection operator. Note that M-P conditions 3 and 2 imply
A∗ = (AMA)∗ = A∗M∗A∗ and MA = (MA)∗ = A∗M∗. We have

R(A∗) = A∗(Y) = (A∗M∗A∗)(Y) = (A∗M∗)(R(A∗)) ⊂ (A∗M∗)(X )︸ ︷︷ ︸
=R(A∗M∗)=R(MA)

⊂ R(A∗)

showing that R(MA) = R(A∗). Thus PR(A∗) = MA = A+A.
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Proof of the M-P Theorem – Cont.

Sufficiency – Cont.

Step (3):

Note that we have yet to use M-P condition 4, MAM = M. From M-P condition 4 and
the result of Step (2) we have

MAM = PR(A∗)M = M

Obviously, then R(M) ⊂ R(A∗), as can be rigorously shown via the subspace chain

R(M) = M(Y) = PR(A∗)M(Y) = PR(A∗)(R(M)) ⊂ PR(A∗)(X ) = R(A∗)

Recalling that R(A+) = R(A∗) (Fact 2), it therefore must be the case that

R(M − A+) ⊂ R(A∗) = N (A)⊥

Using the result of Step (1), PR(A) = AM = AA+, we have

A(M − A+) = 0

with N (A) ∩R(M − A+) = {0}. Therefore Theorem A yields M − A+ = 0.

QED
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Proof of the M-P Theorem – Cont.

Note the similarity of the latter developments in Step 3 to the proof of Theorem
B. In fact, some thought should convince yourself that the latter part of Step 3
provides justification for the claim that the pseudoinverse is unique, so that
Theorem B can be viewed as redundant to the proof of the M-P Theorem.

Theorem B was stated to introduce the student to the use of Theorem A (which
played a key role in the proof of the M-P Theorem) and to present the uniqueness
of the pseudoinverse as a key result in its own right.
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Singular Value Decomposition (SVD)

Henceforth, let us consider only Cartesian Hilbert spaces (i.e., spaces with identity metric
matrices) and consider all finite dimensional operators to be represented as complex
m × n matrices,

A
m×n

: X = C
n → Y = C

m

Note, in general, that the matrix A may be non-square and therefore not have a spectral
representation (because eigenvalues and eigenvectors are then not defined).

Even if A is square, it will in general have complex valued eigenvalues and
non-orthogonal eigenvectors. Even worse, a general n × n matrix can be defective and
not have a full set of n eigenvectors, in which case A is not diagonalizable. In the latter
case, one must one use generalized eigenvectors to understand the spectral properties of
the matrix (which is equivalent to placing the matrix in Jordan Canonical Form).

It is well know that if a square, n × n complex matrix is self-adjoint (Hermitian),
A = AH , then its eigenvalues are all real and it has a full complement of n eigenvectors
that can all be chosen to orthonormal. In this case for eigenpairs (λi , xi ), i = 1, · · · , n, A
has a simple spectral representation given by an orthogonal transformation,

A = λ1x1x
H
1 + · · ·+ λnxnx

H
n = XΛXH

with Λ = diag(λ1 · · · λn), and X is unitary, XHX = XXH = I , where the columns of X
are comprised of the orthonormal eigenvectors xi . If in addition, a hermitian matrix A is
positive-semidefinite, denoted as A ≥ 0, then the eigenvalues are all non-negative, and all
strictly positive if the matrix A is invertible (positive-definite, A > 0).
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Singular Value Decomposition (SVD) – Cont.

Given an arbitrary (nonsquare) complex matrix operator A ∈ C
m×n we can ‘regularized’

its structural properties by ‘squaring’ it to produce a hermitian, positive-semidefinite
matrix, and thereby exploit the very nice properties of hermitian, positive-semidefinite
matrices mentioned above.

Because matrix multiplication is noncommutative, there are two ways to ‘square’ A to
form a hermitian, positive-semidefinite matrix, viz

AAH and AHA

It is an easy exercise to proved that both of these forms are hermitian,
positive-semidefinite, recalling that a matrix M is defined to be positive-semidefinite,
M ≥ 0, if and only if the associated quadratic form 〈x ,Mx〉 = xHMx is real and
positive-semidefinite

〈x ,Mx〉 = xHMx ≥ 0 ∀x
Note that a sufficient condition for the quadratic form to be real is that M be hermitian,
M = MH . For the future, recall that a positive-semidefinite matrix M is positive-definite,
M > 0, if in addition to the non-negativity property of the associated quadratic form we
also have

〈x ,Mx〉 = xHMx = 0 if and only if x = 0
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Singular Value Decomposition (SVD) – Cont.

The eigenstructures of the well-behaved hermitian, positive-semidefinite ‘squares’
AHA and AAH are captured in the Singular value Decomposition (SVD)
introduced in Example 5 given earlier. As noted in that example, knowledge of the
SVD enables one to compute the pseudoinverse of A in the rank deficient case.

The SVD also allow one to compute a variety of important quantities, including
the rank of A, orthonormal bases for all four fundamental subspaces of A,
orthogonal projection operators onto all four fundamental subspaces of the matrix
operator A, the spectral norm of A, the Frobenius norm of A, and the condition
number of A.

The SVD also provides a geometrically intuitive understanding of the nature of A
as an operator based on the action of A as mapping hyperspheres in R(A∗) to
hyperellipsoids in R(A).
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Eigenstructure of AHA

Let A : X = Cn → Y = Cm be an m × n matrix operator mapping between two
Cartesian complex Hilbert spaces.

Recall that (with AH = A∗ for A a mapping between Cartesian spaces)

r(AAH ) = r(A) = r(AH) = r(AHA)

Therefore the number of nonzero (and hence strictly positive) eigenvalues of
AAH : Cm → Cm and AHA : Cn → Cn must both be equal to r = r(A).

Let the nonnegative eigenvalues of AHA be denoted and ordered as

σ2
1 ≥ · · · ≥ σ2

r > σ2
r+1 = · · · = σ2

n = 0︸ ︷︷ ︸
eigenvalue 0 has multiplicity ν = n − r

with corresponding n-dimensional orthonormal eigenvectors

v1 · · · vr︸ ︷︷ ︸
span of R(AH ) = N (A)⊥

vr+1 · · · vn︸ ︷︷ ︸
spans N (A) = N (AHA)
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Eigenstructure of AHA – Cont.

Thus we have

(AHA)vi = σ2
i vi with σ2

i > 0 for i = 1, · · · , r
and

(AHA)vi = 0 for i = r + 1, · · · , n
The eigenvectors vr+1 · · · vn can be chosen to be any orthonormal set spanning
N (A).

An eigenvectors vi associated with a distinct nonzero eigenvalues σ2
i , 1 ≤ i ≤ r , is

unique up to sign vi �→ ±vi .

Eigenvectors vi associated with the same nondistinct nonzero eigenvalue σ2
i with

multiplicity p can be chosen to be any orthonormal set that spans the
p-dimensional eigenspace associated with that eigenvalue.

Thus we see that there is a lack of uniqueness in the eigen-decomposition of AHA.
This lack of uniqueness (as we shall see) will carry over to a related lack of
uniqueness in the SVD.

What is unique are the values of the nonzero eigenvalues, the eigenspaces
associated with those eigenvalues, and any projection operators we construct from
the eigenvectors (uniqueness of projection operators).
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Eigenstructure of AHA – Cont.

In particular, we uniquely have

PR(AH ) = V1 V
H
1 and PN (A) = V2 V

H
2

where

V1 �
(
v1 · · · vr

) ∈ C
n×r V2 �

(
vr+1 · · · vn

) ∈ C
n×ν

and
V �

(
V1 V2

)
=

(
v1 · · · vr vr+1 · · · vn

) ∈ C
n×n

Note that

R(V1) = R(AH ), R(V2) = N (A), R(V ) = X = Cn

I
n×n

= VHV = VVH = V1V
H
1 + V2V

H
2 = PR(AH ) + PN (A)

I
r×r

= VH
1 V1, I

ν×ν
= VH

2 V2

It is straightforward to show that V1 V
H
1 and V2 V

H
2 are idempotent and

self-adjoint.
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Eigenstructure of AHA – Cont.

We now prove two identities that will prove useful when deriving the SVD.

Taking σi =
√
σ2
i define

S
r×r

� diag(σ1 · · · σr )

Then
AHAvi = σ2

i vi 1 ≤ i ≤ r

can be written as
AHAV1 = V1S

2

which yields
I

r×r
= S−1VH

1 A
HAV1S

−1 (1)

We also note that

AHAvi = 0 ⇔ Avi ∈ R(A) ∩ N (AH) = {0}
so that AHAvi = 0, i = r + 1, · · · , n yields

0
m×ν

= AV2 (2)
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Eigenstructure of AAH

The eigenstructure of AHA determined above places constraints on the
eigenstructure of AAH .

Above we have shown that

(AHA)vi = σ2
i vi i = 1, · · · , r

where σ2
i , 1 ≤ i ≤ r , are nonzero. If we multiply both sides of this equation by A

we get (recall that r = r(AAH ) ≤ m

(AAH)(Avi ) = σ2(Avi ) i = 1, · · · , r

Showing that Avi and σ2
i are eigenvector-eigenvalue pairs.

Since AAH is hermitian, the vectors Avi must be orthogonal. In fact, the vectors

ui �
1

σi
Avi 1 ≤ i ≤ r

are orthonormal.
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Eigenstructure of AAH – Cont.

This follows from defining

U1 =
(
u1 · · · ur

) ∈ C
m×r

which is equivalent to
U1 = AV1S

−1

and noting that Equation (1) yields orthogonality of the columns of U1

UH
1 U1 = S−1VH

1 AHAV1S
−1 = I

Note from the above that

S
r×r

= UH
1 AV1 (3)

Also note that a determination of V1 (based on a resolution of the ambiguities
described above) completely specifies U1 = AV1S

−1. Contrawise, it can be shown
that a specification of U1 provides a unique determination of V1.
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Eigenstructure of AAH - Cont.

Because ui correspond to the nonzero eigenvalues of AAH they must span
R(AAH ) = R(A). Therefore

R(U1) = R(A) and PR(A) = U1U
H
1

Complete the set ui , i = 1, · · · , r , to include a set of orthonormal vectors, ui ,
i = r + 1, · · ·m, orthogonal to R(U1) (this can be done via random selection of
new vectors in Cm followed b Gram-Schimdt orthonormalization.) Let

U2
m×μ

=
(
ur+1 · · · um

)
with μ = m − r .

By construction
R(U2) = R(U1)

⊥ = R(A)⊥ = N (AH)

and therefore
0

n×μ
= AHU2 (4)

and
PN (AH ) = U2U

H
2

Ken Kreutz-Delgado (UC San Diego) ECE 275A Fall 2011 39 / 48



Eigenstructure of AAH– Cont.

Setting
U =

(
u1 · · · ur ur+1 · · · um

)
=

(
U1 U2

)
we have

I
m×m

= UHU = UUH = U1U
H
1 + U2U

H
2 = PR(A) + PN (AH )
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Derivation of the SVD

Σ
m×n

� UHAV =

(
UH
1

UH
2

)
A
(
V1 V2

)
=

(
UH
1 AV1 U1AV2

UH
2 AV1 UH

2 AV2

)
=

(
S 0
0 0

)

or
A = UΣVH

Note that

A =
(
U1 U2

)(S 0
0 0

)(
VH
1

VH
2

)
= U1SV

H
1

This yields the Singular Value Decomposition (SVD) factorization of A

SVD: A = UΣVH = U1SV
H
1

Note that when A is square and full rank, we have U = U1, V = V1, Σ = S , and

A = USVH
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SVD Properties

The matrix U is unitary, U−1 = UH , and its columns form an orthonormal basis for the
codomain Y = C

m wrt to the standard inner product. (Its rows are also orthonormal.) If
we denote the columns of U, known as the left singular vectors, by ui , i = 1, · · · ,m,
the first r lsv’s comprise the columns of the m × r matrix U1, while the remaining lsv’s
comprise the columns of the m × μ matrix U2, where μ = m − r is the dimension of the
nullspace of A∗. The lsv ui is in one-to-one correspondence with the singular value σi for
i = 1, · · · , r .
The matrix V is unitary, V−1 = UH , and its columns form an orthonormal basis for the
domain X = C

n wrt to the standard inner product. (Its rows are also orthonormal.) If we
denote the columns of V , known as the right singular vectors, by vi , i = 1, · · · ,m, the
first r rsv’s comprise the columns of the n × r matrix V1, while the remaining rsv’s
comprise the columns of the n × ν matrix V2, where ν = n − r is the nullity (dimension
of the nullspace) of A. The rsv vi is in one-to-one correspondence with the singular value
σi for i = 1, · · · , r .
We have

A = U1SV
H
1 =

(
u1 · · · ur

)⎛⎜⎝
σ1

. . .

σr

⎞
⎟⎠
⎛
⎜⎝
vH
1

...
vH
r

⎞
⎟⎠ = σ1u1v

H
1 + · · ·+ σrurv

H
r

Each term in this dyadic expansion is unique (i.e., does not depend on how the
ambiguities mentioned above are resolved).
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SVD Properties – Cont.

We can use the SVD to gain geometric intuition of the action of the matrix
operator A : X = Cn → Y = Cm on the space X = R(AH ) +N (A).

The action of A on N (A) = R(V2) is trivial to understand from its action on the
right singular vectors which form a basis for N (A),

Avi = 0 i = r + 1, · · · , n

In class we discussed the geometric interpretation of the action of the operator A
on R(AH) based on the dyadic expansion

A = σ1u1v
H
1 + · · ·+ σrurv

H
r

as a mapping of a hypersphere in R(AH ) to an associated hyperellipsoid in R(A)
induced by the basis vector mappings

vi
A→ σiui i = 1, · · · , r
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SVD Properties – Cont.

When A is square and presumably full rank, r = n, this allows us to measure the
numerical conditioning of A via the quantity (the condition number of A)

cond(A) =
σ1

σn

This measures the degree of ‘flattening’ (distortion) of the hypersphere induced by
the mapping A. A perfectly conditioned matrix A has cond(A) = 1, and an
infinitely ill-conditioned matrix has cond(A) = +∞.

Using the fact that for square matrices detA = detAT and detAB = detA detB,
we note that

1 = det I = detUUH = detU detU = | detU |2
or

| detU | = 1

and similarly for the unitary matrices UH , V , and VH . (Note BTW that this
implies for a unitary matrix U , detU = e jφ for some φ ∈ R. When U is real and
orthogonal, U−1 = UT , this reduces to detU = ±1.) Thus for a square matrix A.

| detA| = detUSUH = | detU | · | det S | · | detU | = detS = σ1σ1 · · ·σn
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SVD Properties – Cont.

Exploiting identities provable from the M-P Theorem (see Homework 3) we have

A+ = VΣ+UH

=
(
V1 V2

)(S+ 0
0 0

)(
UH

1 UH
2

)
= V1S

−1UH
1

=
(
v1 · · · vr

)⎛⎜⎝
1
σ1

. . .
1
σr

⎞
⎟⎠
⎛
⎜⎝
uH
1

...
uH
r

⎞
⎟⎠

=
1

σ1
v1u

H
1 + · · ·+ 1

σr
vru

H
r

Note that this construction works regardless of the value of the rank r . This shows that
knowledge of the SVD of a matrix A allows us to determine its p-inv even in the
rank-deficient case. Also note that the pseudoinverse is unique, regardless of the
particular SVD variant (i.e., it does not depend on how the ambiguities mentioned above
are resolved).
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SVD Properties – Cont.

Note that having an SVD factorization of A at hand provides us with an orthonormal
basis for X = C

n (the columns of V ), an orthonormal basis for R(AH) (the columns of
V1), an orthonormal basis for N (A) (the columns of V2), an orthonormal basis for
Y = C

m (the columns of U), an orthonormal basis for R(A) (the columns of U1), and an
orthonormal basis for N (AH) (the columns of U2).

Although the SVD factorization, the bases mentioned above, are not uniquely defined, it
is the case that the orthogonal projectors constructed from the basis are unique (from
uniqueness of projection operators). Thus we can construct the unique orthogonal
projection operators via

PR(A) = U1U
H
1 PN (AH ) = U2U

H
2 PR(AH ) = V1V

H
1 PN (A) = V2V

H
2

Obviously having access to the SVD is tremendously useful. With the background we
have now covered, one can now can greatly appreciate the utility of the Matlab
command svd(A) which returns the singular values, left singular vectors, and right
singular vectors of A, from which one can construct all of the entities described above.
(Note that the singular vectors returned by Matlab will not necessarily all agree with the
ones you construct by other means because of the ambiguites mentioned above.
However, the singular values will be the same, and the left and right singular vector
associated with the same, distinct singular value should only differ from yours by a sign
at most.) Another useful Matlab command is pinv(A) which returns the pseudoinverse of
A regardless of the value of the rank of A.
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Two Simple SVD Examples

In the 3rd homework assignment you are asked to produce the SVD for some simple
matrices by hand and then construct the four projection operators for each matrix as well
as the pseudoinverse. The problems in Homework 3 have been very carefully designed so
that you do not have to perform eigendecompositions to obtain the SVD’s. Rather, you
can easily force the hand-crafted matrices into SVD factored form via a series of simple
steps based on understanding the geometry underlying the SVD. Two examples of this
(nongeneral) solution procedure are given here.

Example 1. A =

(
1
2

)
. First note that m = 2, n = 1, r = r(A) = 1 (obviously),

ν = n − r = 0, and μ = m − r = 1. This immediately tells us that V = V1 = v1 = 1.
We have(

1
2

)
=

(
1√
5

2√
5

)
︸ ︷︷ ︸

U1

·
√
5︸︷︷︸

S

· 1︸︷︷︸
VH

=

(
1√
5

X
2√
5

X

)
︸ ︷︷ ︸

U1 U2

·
( √

5
0

)
︸ ︷︷ ︸

Σ

· 1︸︷︷︸
VH

=

(
1√
5

2√
5

2√
5

− 1√
5

)
︸ ︷︷ ︸

U1 U2︸ ︷︷ ︸
U

·
( √

5
0

)
︸ ︷︷ ︸

Σ

· 1︸︷︷︸
VH

Note that we exploit the fact that we know the dimensions of the various matrices we
have to compute. Here we first filled out Σ before determining the unknown values of
U2 = u2, which was later done using the fact that u2 ⊥ u1 = U1.
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Two Simple SVD Examples – Cont.

Example 2. A =

(
1 1
1 1

)
. Note that m = 2, n = 2, r = r(A) = 1 (obviously),

ν = n − r = 1, and μ = m − r = 1. Unlike the previous example, here we have a
nontrivial nullspace.

(
1 1
1 1

)
=

(
1
1

)(
1 1

)
=

(
1√
2

1√
2

)
︸ ︷︷ ︸

U1

· 2︸︷︷︸
S

·
(

1√
2

1√
2

)
︸ ︷︷ ︸

VT
1

=

(
1√
2

X
1√
2

X

)
︸ ︷︷ ︸

U1 U2

·
(
2 0
0 0

)
︸ ︷︷ ︸

Σ

·

VT
1︷ ︸︸ ︷( 1√

2

1√
2

X X

)
︸ ︷︷ ︸

VT
2

Exploiting the facts that U1 = u1 ⊥ u2 = U2 and V1 = v1 ⊥ v2 = V2 we easily determine
that

(
1 1
1 1

)
=

(
1√
2

1√
2

1√
2

− 1√
2

)
︸ ︷︷ ︸

U1 U2︸ ︷︷ ︸
U

·
(
2 0
0 0

)
︸ ︷︷ ︸

Σ

·

VT
1︷ ︸︸ ︷(

1√
2

1√
2

1√
2

− 1√
2

)
︸ ︷︷ ︸

VT
2︸ ︷︷ ︸

VT

Note the ± sign ambiguity in the choice of U2 and V2.
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